Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechniques ; 73(1): 5-17, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35698829

RESUMO

Epigenetic mechanisms control chromatin accessibility and gene expression to ensure proper cell fate specification. Histone proteins are integral chromatin components, and their modification promotes gene expression regulation. Specific proteins recognize modified histones such as the chromodomain protein MRG-1. MRG-1 is the Caenorhabditis elegans ortholog of mammalian MRG15, which is involved in DNA repair. MRG-1 binds methylated histone H3 and is important for germline maturation and safeguarding. To elucidate interacting proteins that modulate MRG-1 activity, we performed in-depth protein-protein interaction analysis using immunoprecipitations coupled with mass spectrometry. We detected strong association with the Small ubiquitin-like modifier SUMO, and found that MRG-1 is post-translationally modified by SUMO. SUMOylation affects chromatin-binding dynamics of MRG-1, suggesting an epigenetic regulation pathway, which may be conserved.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Cromatina/genética , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Mamíferos/metabolismo , Sumoilação
2.
Biotechniques ; 72(5): 175-184, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35297663

RESUMO

Studying protein interactions in vivo can reveal key molecular mechanisms of biological processes. Co-immunoprecipitation with mass spectrometry detects protein-protein interactions with high throughput. The nematode Caenorhabditis elegans is a powerful genetic model organism for in vivo studies. Yet its rigid and complex tissues require optimization for biochemistry applications to ensure reproducibility. The authors optimized co-immunoprecipitation with mass spectrometry by combining a native co-immunoprecipitation procedure with single-pot, solid-phase enhanced sample preparation. The authors' results for the highly conserved chromatin regulator FACT subunits HMG-3 and HMG-4 demonstrated that single-pot, solid-phase enhanced sample preparation-integrated co-immunoprecipitation with mass spectrometry procedures for C. elegans samples are highly robust. Moreover, in an accompanying study about the chromodomain factor MRG-1 (MRG15 in humans), the authors demonstrated remarkably high reproducibility for ten replicate experiments.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Imunoprecipitação , Espectrometria de Massas , Reprodutibilidade dos Testes
3.
Genetics ; 211(1): 121-139, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30425042

RESUMO

Chromatin regulators play important roles in the safeguarding of cell identities by opposing the induction of ectopic cell fates and, thereby, preventing forced conversion of cell identities by reprogramming approaches. Our knowledge of chromatin regulators acting as reprogramming barriers in living organisms needs improvement as most studies use tissue culture. We used Caenorhabditis elegans as an in vivo gene discovery model and automated solid-phase RNA interference screening, by which we identified 10 chromatin-regulating factors that protect cells against ectopic fate induction. Specifically, the chromodomain protein MRG-1 safeguards germ cells against conversion into neurons. MRG-1 is the ortholog of mammalian MRG15 (MORF-related gene on chromosome 15) and is required during germline development in C. elegans However, MRG-1's function as a barrier for germ cell reprogramming has not been revealed previously. Here, we further provide protein-protein and genome interactions of MRG-1 to characterize its molecular functions. Conserved chromatin regulators may have similar functions in higher organisms, and therefore, understanding cell fate protection in C. elegans may also help to facilitate reprogramming of human cells.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Reprogramação Celular , Neurônios/citologia , Células-Tronco/citologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neurogênese , Neurônios/metabolismo , Mapas de Interação de Proteínas , Células-Tronco/metabolismo
4.
Dev Cell ; 46(5): 611-626.e12, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30078731

RESUMO

The chromatin regulator FACT (facilitates chromatin transcription) is essential for ensuring stable gene expression by promoting transcription. In a genetic screen using Caenorhabditis elegans, we identified that FACT maintains cell identities and acts as a barrier for transcription factor-mediated cell fate reprogramming. Strikingly, FACT's role as a barrier to cell fate conversion is conserved in humans as we show that FACT depletion enhances reprogramming of fibroblasts. Such activity is unexpected because FACT is known as a positive regulator of gene expression, and previously described reprogramming barriers typically repress gene expression. While FACT depletion in human fibroblasts results in decreased expression of many genes, a number of FACT-occupied genes, including reprogramming-promoting factors, show increased expression upon FACT depletion, suggesting a repressive function of FACT. Our findings identify FACT as a cellular reprogramming barrier in C. elegans and humans, revealing an evolutionarily conserved mechanism for cell fate protection.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Reprogramação Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Fatores de Elongação da Transcrição/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Cromatina/genética , Proteínas de Ligação a DNA/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fatores de Elongação da Transcrição/genética , Transcriptoma
5.
PLoS One ; 11(1): e0146511, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26751567

RESUMO

Damage to the mitochondrial genome (mtDNA) can lead to diseases for which there are no clearly effective treatments. Since mitochondrial function and biogenesis are controlled by the nutrient environment of the cell, it is possible that perturbation of conserved, nutrient-sensing pathways may successfully treat mitochondrial disease. We found that restricting glucose or otherwise reducing the activity of the protein kinase A (PKA) pathway can lead to improved proliferation of Saccharomyces cerevisiae cells lacking mtDNA and that the transcriptional response to mtDNA loss is reduced in cells with diminished PKA activity. We have excluded many pathways and proteins from being individually responsible for the benefits provided to cells lacking mtDNA by PKA inhibition, and we found that robust import of mitochondrial polytopic membrane proteins may be required in order for cells without mtDNA to receive the full benefits of PKA reduction. Finally, we have discovered that the transcription of genes involved in arginine biosynthesis and aromatic amino acid catabolism is altered after mtDNA damage. Our results highlight the potential importance of nutrient detection and availability on the outcome of mitochondrial dysfunction.


Assuntos
DNA Mitocondrial/genética , Glucose/metabolismo , Saccharomyces cerevisiae/genética , Arginina/química , Proliferação de Células , Meios de Cultura/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/metabolismo , Dano ao DNA , Fermentação , Deleção de Genes , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mutação , Fosforilação , Plasmídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...